Juicios metacognitivos en los procesos de aprendizaje en la educación superior: una revisión sistemática 2018-2023

Metacognitive judgments in learning processes in higher education: A systematic review 2018-2023

Adiela Zapata Zapata , Grace Judith Vesga Bravo , Aníbal Puente Ferreras  , Jesús María Alvarado Izquierdo
Revista Latinoamericana de Psicología, (2024), 56, pp. 147-155.
Recibido el 12 de diciembre de 2023
Aceptado el 15 de agosto de 2024

https://doi.org/10.14349/rlp.2024.v56.15

Resumen

Introducción: Los juicios metacognitivos han sido objeto de estudio en el campo de la metacognición en las últimas décadas, puesto que analizan las creencias que los estudiantes tienen sobre su desempeño académico, con el fin de contribuir a la adaptación de estrategias para mejorar la autonomía y el criterio de los aprendices. Objetivo: Identificar los juicios metacognitivos que se emplean con mayor frecuencia en estudiantes universitarios a partir de una revisión sistemática realizada entre los años 2018 y 2023. Método: La metodología se basó en la Declaración Prisma, y la búsqueda se llevó a cabo en las bases de datos de Science Direct, Scopus y Springer. Se aplicaron criterios de depuración y se analizaron 61 artículos. Resultados: Se encontró que los juicios metacognitivos que se aplican con mayor regularidad son los juicios predictivos y postdictivos, mientras que los juicios concurrentes son los menos utilizados. Además, se observó que los juicios postdictivos presentan una mayor precisión. Discusión y conclusiones: Los resultados sugieren que, para lograr una alta calibración entre los juicios metacognitivos y los resultados académicos reales, es necesario considerar distintas categorías de juicios metacognitivos que contribuyan a la construcción de un sistema integral. Esto proporcionaría al estudiante una variedad de herramientas que pueda implementar de manera óptima en sus procesos de aprendizaje.

Palabras clave:
Juicios metacognitivos, metacognición, aprendizaje efectivo, estrategias de aprendizaje.

Abstract

Introduction: Metacognitive judgments have become an object of study in the field of metacognition in recent decades, since they analyze the beliefs that students have regarding their academic performance, to contribute to the adaptation of strategies for the improvement of the autonomy and judgment of learners. Objective: To identify the metacognitive judgments that are most frequently used in university students based on a systematic review between the years 2018 to 2023. Method: The methodology of this article was based on the PRISMA Statement and the search was conducted in the Science Direct, Scopus and Springer databases; use was made in the purification criteria, 61 articles were analyzed. Results: It was found that the metacognitive judgments that are applied most regularly concern pre-test and post-test judgments, while the judgments during the test are those that are used less regularly; likewise, those that present greater precision are those that are applied after the test. Discussion and conclusions: The results allow us to conclude that in order to obtain high calibration between metacognitive judgments and real academic results, different categories of metacognitive judgments must be involved, which contribute to the construction of a complex and complete system that provides the student with a variety of tools that can be optimally implemented in their learning processes.

Keywords:
Metacognitive judgments, metacognition, effective learning, learning strategies.

Artículo Completo
Bibliografía

Agus, M., Peró-Cebollero, M., Guàrdia-Olmos, J., Portoghese, I., Mascia, M. L., & Penna, M. P. (2020). What’s about the calibration between confidence and accuracy? Findings in probabilistic problems from Italy and Spain. EURASIA Journal of Mathematics, Science and Technology Education16(2), 1-21. https://doi.org/10.29333/ejmste/113111

Avhustiuk, M. M., Pasichnyk, I. D., & Kalamazh, R. V. (2018). The illusion of knowing in metacognitive monitoring: Effects of the type of information and of personal, cognitive, metacognitive, and individual psychological characteristics. Europe’s Journal of Psychology14(2), 317-341. https://doi.org/10.5964/ejop.v14i2.1418

Carpenter, S. K., Northern, P. E., Tauber, S., & Toftness, A. R. (2020). Effects of lecture fluency and instructor experience on students’ judgments of learning, test scores, and evaluations of instructors. Journal of Experimental Psychology: Applied26(1), 26-39. https://doi.org/10.1037/xap0000234

Carter-Thuillier, B., & Gallardo-Fuentes, F. (2021). Aprendizaje-servicio en contextos migratorios o culturalmente diversos: una revisión sistemática centrada en el campo de la Educación Física. Estudios Pedagógicos (Valdivia), 47(4), 43-59. https://doi.org/10.4067/S0718-07052021000400043

Chang, M., & Brainerd, C. J. (2023). Changed-goal or cue-strengthening? Examining the reactivity of judgments of learning with the dual-retrieval model. Metacognition and Learning18(1), 183-217. https://doi.org/10.1007/s11409-022-09321-y

DeCaro, R., & Thomas, A. K. (2020). Prompting retrieval during monitoring and self-regulated learning in older and younger adults. Metacognition and Learning15, 367-390. https://doi.org/10.1007/s11409-020-09230-y

DeYoung, C. M., & Serra, M. J. (2021). Judgments of learning reflect the animacy advantage for memory, but not beliefs about the effect. Metacognition and Learning, 16, 711–747.  https://doi.org/10.1007/s11409-021-09264-w

Fritzsche, E. S., Händel, M., & Kröner, S. (2018). What do second-order judgments tell us about low-performing students’ metacognitive awareness? Metacognition and Learning13, 159-177. https://doi.org/10.1007/s11409-018-9182-9

Froese, L., & Roelle, J. (2022). Expert example standards but not idea unit standards help learners accurately evaluate the quality of self-generated examples. Metacognition and Learning17, 565-588. https://doi.org/10.1007/s11409-022-09293-z

Geraci, L., Kurpad, N., Tirso, R., Gray, K. N., & Wang, Y. (2022). Metacognitive errors in the classroom: The role of variability of past performance on exam prediction accuracy. Metacognition and Learning, 18, 219–236. https://doi.org/10.1007/s11409-022-09326-7

Golke, S., Steininger, T., & Wittwer, J. (2022). What makes learners overestimate their text comprehension? The impact of learner characteristics on judgment bias. Educational Psychology Review, 34, 2405–2450. https://doi.org/10.1007/s10648-022-09687-0

Gutierrez de Blume, A. P., Schraw, G., Kuch, F., & Richmond, A. S. (2021). General Accuracy and General Error Factors in Metacognitive Monitoring and the Role of Time on Task in Predicting Metacognitive Judgments. CES Psicología, 14(2), 179-208. https://doi.org/10.21615/cesp.5494

Gyllen, J. G., Stahovich, T. F., Mayer, R. E., Darvishzadeh, A., & Entezari, N. (2019). Accuracy in judgments of study time predicts academic success in an engineering course. Metacognition and Learning14, 215-228. https://doi.org/10.1007/s11409-019-09207-6

Ha, H., & Lee, H. S. (2023). Think higher, gain more: The effect of making inference-and memory-based metacognitive judgments on text learning. Metacognition and Learning, 18, 567–590. https://doi.org/10.1007/s11409-023-09341-2

Händel, M., & Bukowski, A. K. (2019). The gap between desired and expected performance as predictor for judgment confidence. Journal of Applied Research in Memory and Cognition8(3), 347-354. https://doi.org/10.1016/j.jarmac.2019.05.005

Händel, M., & Dresel, M. (2018). Confidence in performance judgment accuracy: The unskilled and unaware effect revisited. Metacognition and Learning, 13, 265-285. https://doi.org/10.1007/s11409-018-9185-6

Händel, M., & Dresel, M. (2022). Structure, relationship, and determinants of monitoring strategies and judgment accuracy. An integrated model and evidence from two studies. Learning and Individual Differences100, 102229. https://doi.org/10.1016/j.lindif.2022.102229

Hausman, H., Myers, S. J., & Rhodes, M. G. (2021). Improving metacognition in the classroom. Zeitschrift für Psychologie, 229(2), 89-103. https://doi.org/10.1027/2151-2604/a000440

Ikeda, K. (2023). Uninformative anchoring effect in judgments of learning. Metacognition and Learning, 18, 527–548. https://doi.org/10.1007/s11409-023-09339-w

Jang, Y., Lee, H., Kim, Y., & Min, K. (2020). The relationship between metacognitive ability and metacognitive accuracy. Metacognition and Learning, 15, 411-434. https://doi.org/10.1007/s11409-020-09232-w

Kim, P. H. (2021). Facilitation of metacognitive accuracy among learners in higher education. Review of International Geographical Education Online11(8).

Kolić-Vehovec, S., Pahljina-Reinić, R., & Rončević Zubković, B. (2022). Effects of collaboration and informing students about overconfidence on metacognitive judgment in conceptual learning. Metacognition and Learning17, 87-116. https://doi.org/10.1007/s11409-021-09275-7

Kollmer, J., Schleinschok, K., Scheiter, K., & Eitel, A. (2020). Is drawing after learning effective for metacognitive monitoring only when supported by spatial scaffolds? Instructional Science48, 569-589. https://doi.org/10.1007/s11251-020-09521-6

Koriat, A. (2019). Confidence judgments: The monitoring of object-level and same-level performance. Metacognition and Learning14, 463-478. https://doi.org/10.1007/s11409-019-09195-7

Kubik, V., Jemstedt, A., Eshratabadi, H. M., Schwartz, B. L., & Jönsson, F. U. (2022). The underconfidence-with-practice effect in action memory: The contribution of retrieval practice to metacognitive monitoring. Metacognition and Learning, 17, 375-398. https://doi.org/10.1007/s11409-021-09288-2

Kubik, V., Koslowski, K., Schubert, T., & Aslan, A. (2022). Metacognitive judgments can potentiate new learning: The role of covert retrieval. Metacognition and Learning, 17, 1057–1077. https://doi.org/10.1007/s11409-022-09307-w

Lajoie, S. P., Li, S., & Zheng, J. (2023). The functional roles of metacognitive judgement and emotion in predicting clinical reasoning performance with a computer simulated environment. Interactive Learning Environments, 31(6), 3464-3475. https://doi.org/10.1080/10494820.2021.1931347

Laursen, S. J., & Fiacconi, C. M. (2021). Constraints on the use of the memorizing effort heuristic. Metacognition and Learning, 17, 1-51. https://doi.org/10.1007/s11409-021-09273-9

Lippmann, M., Danielson, R. W., Schwartz, N. H., Körndle, H., & Narciss, S. (2021). Effects of keyword tasks and biasing titles on metacognitive monitoring and recall. Metacognition and Learning16, 233-253. https://doi.org/10.1007/s11409-020-09246-4

Madison, E. M., & Fulton, E. K. (2022). The influence of summary modality on metacomprehension accuracy. Metacognition and Learning, 17, 117-138. https://doi.org/10.1007/s11409-021-09277-5

Mindrila, D., & Cao, L. (2022). Latent profiles of online self-regulated learning: Relationships with predicted and final course grades. The International Review of Research in Open and Distributed Learning23(3), 212-239. https://doi.org/10.19173/irrodl.v23i2.5946

Morphew, J. W. (2021). Changes in metacognitive monitoring accuracy in an introductory physics course. Metacognition and Learning16, 89-111. https://doi.org/10.1007/s11409-020-09239-3

Muller, A., Sirianni, L. A., & Addante, R. J. (2021). Neural correlates of the Dunning–Kruger effect. European Journal of Neuroscience, 53(2), 460-484. https://doi.org/10.1111/ejn.14935

Naujoks, N., Harder, B., & Händel, M. (2022). Testing pays off twice: Potentials of practice tests and feedback regarding exam performance and judgment accuracy. Metacognition and Learning17(2), 479-498. https://doi.org/10.1007/s11409-022-09295-x

Nederhand, M. L., Tabbers, H. K., De Bruin, A. B., & Rikers, R. M. (2021). Metacognitive awareness as measured by second-order judgements among university and secondary school students. Metacognition and Learning16, 1-14. https://doi.org/10.1007/s11409-020-09228-6

Ordin, M., Polyanskaya, L., & Soto, D. (2020). Metacognitive processing in language learning tasks is affected by bilingualism. Journal of Experimental Psychology: Learning, Memory, and Cognition46(3), 529-538. https://doi.org/10.1037/xlm0000739

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M, Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A.,… & Moher, D. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790-799. https://doi.org/10.1016/j.rec.2021.07.010

Pesout, O., & Nietfeld, J. L. (2021). How creative am I?: Examining judgments and predictors of creative performance. Thinking Skills and Creativity, 40, 100836. https://doi.org/10.1016/j.tsc.2021.100836

Rivers, M. L., Dunlosky, J., & Joynes, R. (2019). The contribution of classroom exams to formative evaluation of concept-level knowledge. Contemporary Educational Psychology, 59, 101806. https://doi.org/10.1016/j.cedpsych.2019.101806

Robey, A., Castillo, C., Ha, J., Kerlow, M., Tesfa, N., & Dougherty, M. (2022). Generalizing the effect of type of metacognitive judgment on restudy decisions. Metacognition and Learning17, 73-85. https://doi.org/10.1007/s11409-021-09274-8

Romero, A., & Hurtado, S. (2022). Motivation and feelings of competence among university students in introductory physics. Research in Science Education, 53, 559–576. https://doi.org/10.1007/s11165-022-10073-7.

Rusmana, A. N., Roshayanti, F., & Ha, M. (2020). Debiasing overconfidence among Indonesian undergraduate students in the biology classroom: An intervention study of the KAAR model. Asia-Pacific Science Education6(1), 228-254. https://doi.org/10.1163/23641177-BJA00001

Schnaubert, L., Krukowski, S., & Bodemer, D. (2021). Assumptions and confidence of others: The impact of socio-cognitive information on metacognitive self-regulation. Metacognition and Learning16, 855-887. https://doi.org/10.1007/s11409-021-09269-5

Senko, C., Perry, A. H., & Greiser, M. (2022). Does triggering learners’ interest make them overconfident? Journal of Educational Psychology, 114(3), 482-497. https://doi.org/10.1037/edu0000649

Strauss, A., & Corbin, J. (2002). Bases de la investigación cualitativa: técnicas y procedimientos para desarrollar la teoría fundamentada. Universidad de Antioquia.

Talsma, K., Schüz, B., & Norris, K. (2019). Miscalibration of self-efficacy and academic performance: Self-efficacy≠ self-fulfilling prophecy. Learning and Individual Differences69, 182-195. https://doi.org/10.1016/j.lindif.2018.11.002

Tarling, I., & Gunness, S. (2021). Educators’ Beliefs, Perceptions and Practices Around Self-Directed Learning, Assessment and Open Education Practices. In: D. Burgos., & J. Olivier. (Eds.), Radical Solutions for Education in Africa: Open Education and Self-directed Learning in the Continent, (pp.187-209), Springer, Singapore. https://doi.org/10.1007/978-981-16-4099-5_10

Tekin, E., & Roediger, H. L. (2021). The effect of delayed judgments of learning on retention. Metacognition and Learning16, 407-429. https://doi.org/10.1007/s11409-021-09260-0

Tugtekin, U., & Odabasi, H. F. (2022). Do interactive learning environments have an effect on learning outcomes, cognitive load and metacognitive judgments? Education and Information Technologies27(5), 7019-7058. https://doi.org/10.1007/s10639-022-10912-0

Van der Linden, J., van Schilt-Mol, T., Nieuwenhuis, L., & Van Der Vleuten, C. (2023). Perceived control decisions in preparation for a summative achievement test in higher education. Frontiers in Education, 7, 1043238. https://doi.org/10.3389/feduc.2022.1043238

Vangsness, L., & Young, M. E. (2021). More isn’t always better: When metacognitive prompts are misleading. Metacognition and Learning, 16, 135-156. https://doi.org/10.1007/s11409-020-09241-9

Von Hoyer, J. F., Kimmerle, J., & Holtz, P. (2022). Acquisition of false certainty: Learners increase their confidence in the correctness of incorrect answers after online information search. Journal of Computer Assisted Learning38(3), 833-844. https://doi.org/10.1111/jcal.12657

Waldeyer, J., & Roelle, J. (2021). The keyword effect: A conceptual replication, effects on bias, and an optimization. Metacognition and Learning16, 37-56. https://doi.org/10.1007/s11409-020-09235-7

Wang, Y., & List, A. (2019). Calibration in multiple text use. Metacognition and Learning14, 131-166. https://doi.org/10.1007/s11409-019-09201-y

Wang, J., & Xing, Q. (2019). Metacognitive illusion in category learning: Contributions of processing fluency and beliefs. Advances in Cognitive Psychology15(2), 100-110.

Welter, V. D. E., Becker, L. B., & Großschedl, J. (2022). Helping learners become their own teachers: The beneficial impact of trained concept-mapping-strategy use on metacognitive regulation in learning. Education Sciences12(5), 325. https://doi.org/10.3390/educsci12050325

Wesenberg, L., Krieglstein, F., Jansen, S., Rey, G. D., Beege, M., & Schneider, S. (2022). The influence of the order and congruency of correct and erroneous worked examples on learning and (meta-) cognitive load. Frontiers in Psychology, 13, 6726. https://doi.org/10.3389/fpsyg.2022.1032003

Wiedbusch, M. D., & Azevedo, R. (2020). Modeling metacomprehension monitoring accuracy with eye gaze on informational content in a multimedia learning environment. ETRA ‘20 Full Papers: ACM Symposium on Eye Tracking Research and Applications, Article 20, 1-9. https://doi.org/10.1145/3379155.3391329

Wiedbusch, M., Azevedo, R., & Brown, M. (2020). Can a composite metacognitive judgment accuracy score successfully capture performance variance during multimedia learning? Proceedings of the Annual Meeting of the Cognitive Science Society, 42, 2065-2071. https://escholarship.org/uc/item/6m0773p3

Yu, Y., Jiang, Y., & Li, F. (2020). The effect of value on judgment of learning in tradeoff learning condition: The mediating role of study time. Metacognition and Learning15, 435-454. https://doi.org/10.1007/s11409-020-09234-8

Zhou, M. (2023). Students’ metacognitive judgments in online search: A calibration study. Education and Information Technologies28, 2619-2638. https://doi.org/10.1007/s10639-022-11217-y

Zotzmann, K., & Sheldrake, R. (2021). Postgraduate students’ beliefs about and confidence for academic writing in the field of applied linguistics. Journal of Second Language Writing, 52, 100810.  https://doi.org/10.1016/j.jslw.2021.100810

PDF