Análisis de sentimiento de tweets sobre la vacuna contra el COVID-19 en países iberoamericanos hispanohablantes

Sentiment analysis of tweets about the COVID-19 vaccine in Spanish-speaking Ibero-American countries

Pedro Antonio Salcedo Lagos , Gabriela Emilce Kotz Grabole , Carla Michele Vergara Espinoza , Miguel Enrique Sánchez-Hechavarría
Revista Latinoamericana de Psicología, (2022), 54, pp. 1-11.
Recibido el 11 de julio de 2021
Aceptado el 7 de febrero de 2022

https://doi.org/10.14349/rlp.2022.v54.1

Resumen

Introducción: En este estudio se evalúa la emocionalidad asociada a la vacunación contra el COVID-19 a partir de la técnica de análisis de sentimientos de los tweets en países iberoamericanos hispanohablantes. Método: En enero de 2021 se realizó un estudio mixto observacional transversal de 41023 tweets procedentes de nueve países iberoamericanos hispanohablantes (Chile, El Salvador, Venezuela, Ecuador, Argentina, México, Panamá, Perú y España) con una fase cuantitativa y técnicas de análisis de sentimientos mediante algoritmos de inteligencia artificial y una fase cualitativa donde se realizó un análisis del discurso de los tweets cuya emocionalidad era en extremo positiva y negativa. Resultados: A partir del análisis de sentimiento de los tweets, se observó que los países presentan una emocionalidad negativa asociada a la vacunación contra el COVID-19, que se podría atribuir a la desconfianza hacia las autoridades y a la eficacia o seguridad de las vacunas, según el análisis del discurso en los tweets de emocionalidad en extremo negativa. Conclusiones: Las técnicas de análisis de sentimientos en combinación con el análisis del discurso de la emocionalidad extrema posibilitaron la monitorización de las opiniones negativas y sus posibles factores asociados en la vacunación contra el COVID-19 en los países iberoamericanos estudiados.

Palabras clave:
Vacunación, COVID-19, análisis de sentimientos, inteligencia artificial, Twitter, análisis del discurso

Abstract

Introduction: This study evaluates the emotionality associated with vaccination against COVID-19 using the sentiment analysis technique of tweets in Spanish-speaking Ibero-American countries. Method: In January 2021 a mixed cross-sectional observational study of 41023 tweets from nine Spanish-speaking Ibero-American countries (Chile, El Salvador, Venezuela, Ecuador, Argentina, Mexico, Panama, Peru and Spain) was carried out with a quantitative phase and analysis techniques of feelings based on artificial intelligence algorithms and a qualitative phase where an analysis of the discourse of the tweets whose emotionality was extremely positive and negative was carried out. Results: From the sentiment analysis of the tweets, it was observed that the countries present a negative emotionality associated with the vaccination against COVID-19, which could be attributed to mistrust towards the authorities and the efficacy or safety of the vaccines, according to the analysis of the discourse in the extremely negative emotionality tweets. Conclusions: Sentiment analysis techniques in combination with extreme emotionality discourse analysis made it possible to monitor negative opinions and their possible associated factors in vaccination against COVID-19 in the Ibero-American countries studied.

Keywords:
Vaccination, COVID-19, sentiment analysis, artificial intelligence, Twitter, discourse analysis

Artículo Completo
Bibliografía

Alpuche-Aranda, C., & Lazcano-Ponce, E. (2020). Alfabetización en salud pública ante la emergencia de la pandemia por COVID-19. Salud Pública de México, 62(3), 331-340.

Anturi Martínez, J., Paz-Realpe, J.-L., Timana, J., & Cobos, C. (2019). Classifiers for sentiment analysis on twitter: A review. RISTI – Revista Iberica de Sistemas e Tecnologias de Informacao, E23, 353-366.

Badiola Ramos, J. (2019). ¿Podemos comerciar Bitcoin usando análisis de sentimiento sobre Twitter? https://repositorio.comillas.edu/xmlui/handle/11531/27168

Bell, S., Clarke, R., Mounier-Jack, S., Walker, J. L., & Paterson, P. (2020). Parents’ and guardians’ views on the acceptability of a future COVID-19 vaccine: A multi-methods study in England. Vaccine, 38(49), 7789-7798. https://doi.org/10.1016/j.vaccine.2020.10.027

Bonnevie, E., Gallegos-Jeffrey, A., Goldbarg, J., Byrd, B., & Smyser, J. (2020). Quantifying the rise of vaccine opposition on Twitter during the COVID-19 pandemic. Journal of Communication in Healthcare, 0(0), 1-8. https://doi.org/10.1080/17538068.2020.1858222

Botello, A., & Casado, R. (2015). Miedos y temores relacionados con la menstruación: estudio cualitativo desde la perspectiva de género. Texto & Contexto-Enfermagem, 24(1), 13-21. https://doi.org/10.1590/0104-07072015000260014

Callaghan, T., Moghtaderi, A., Lueck, J. A., Hotez, P. J., Strych, U., Dor, A., Franklin Fowler, E., & Motta, M. (2020). Correlates and Disparities of COVID-19 Vaccine Hesitancy (SSRN Scholarly Paper ID 3667971). Social Science Research Network. https://doi.org/10.2139/ssrn.3667971

Calsamaglia, B., & Tuson, A. (2008) Las cosas del decir. Manual de análisis del discurso. Editorial Ariel.

Charaudeau, P., & Maingueneau, D. 2005. Diccionario de análisis del discurso.  Amorrortu Editores. 671 p.

Chou, W.Y. S., & Budenz, A. (2020). Considering emotion in COVID-19 vaccine communication: Addressing vaccine hesitancy and fostering vaccine confidence. Health Communication, 35(14), 1718-1722. https://doi.org/10.1080/10410236.2020.1838096

Creswell, J., & Plano Clarke V. (2018). Designing and conducting mixed methods research. Sage.

Cuadrado, O. A. (2019). Desarrollo de una aplicación web para la identificación de oportunidades de emprendimiento e inversión utilizando análisis de sentimientos de Tweets. http://repository.unipiloto.edu.co/handle/20.500.12277/7778

Detoc, M., Bruel, S., Frappe, P., Tardy, B., Botelho-Nevers, E., & Gagneux-Brunon, A. (2020). Intention to participate in a COVID-19 vaccine clinical trial and to get vaccinated against COVID-19 in France during the pandemic. Vaccine, 38(45), 7002-7006. https://doi.org/10.1016/j.vaccine.2020.09.041

Faasse, K., & Newby, J. (2020). Public perceptions of COVID-19 in Australia: Perceived risk, knowledge, health-protective behaviours, and vaccine intentions. MedRxiv, 2020.04.25.20079996. https://doi.org/10.1101/2020.04.25.20079996

Gallego-Preciado Cobos, L. (2013). Análisis de sentimientos acerca de marcas mediante Tweets. https://e-archivo.uc3m.es/handle/10016/18524

Gallotti, R., Valle, F., Castaldo, N., Sacco, P., & De Domenico, M. (2020). Assessing the risks of ‘infodemics’ in response to COVID-19 epidemics. Nature Human Behaviour, 4(12), 1285-1293. https://doi.org/10.1038/s41562-020-00994-6

Georgiou, N., Delfabbro, P., & Balzan, R. (2020). COVID-19-related conspiracy beliefs and their relationship with perceived stress and pre-existing conspiracy beliefs. Personality and Individual Differences, 166, 110201. https://doi.org/10.1016/j.paid.2020.110201

Graffigna, G., Palamenghi, L., Boccia, S., & Barello, S. (2020). Relationship between citizens’ health engagement and intention to take the COVID-19 Vaccine in Italy: A mediation analysis. Vaccines, 8(4), 576. https://doi.org/10.3390/vaccines8040576

Hung, M., Lauren, E., Hon, E. S., Birmingham, W. C., Xu, J., Su, S., Hon, S. D., Park, J., Dang, P., & Lipsky, M. S. (2020). Social network analysis of COVID-19 sentiments: Application of artificial intelligence. Journal of Medical Internet Research, 22(8), e22590. https://doi.org/10.2196/22590

Imran, A. S., Daudpota, S. M., Kastrati, Z., & Batra, R. (2020). Cross-cultural polarity and emotion detection using sentiment analysis and deep learning on COVID-19 related tweets. IEEE Access, 8, 181074-181090. https://doi.org/10.1109/ACCESS.2020.3027350

Islam, M. S., Sarkar, T., Khan, S. H., Kamal, A.-H. M., Hasan, S. M. M., Kabir, A., Yeasmin, D., Islam, M. A., Chowdhury, K. I. A., Anwar, K. S., Chughtai, A. A., & Seale, H. (2020). COVID-19–Related infodemic and its impact on public health: A global social media analysis. The American Journal of Tropical Medicine and Hygiene, 103(4), 1621-1629. https://doi.org/10.4269/ajtmh.20-0812

Kerr, J. R., Schneider, C. R., Recchia, G., Dryhurst, S., Sahlin, U., Dufouil, C., Arwidson, P., Freeman, A. L. J., & Linden, S. van der. (2020). Predictors of COVID-19 vaccine acceptance across time and countries. MedRxiv, 2020.12.09.20246439. https://doi.org/10.1101/2020.12.09.20246439

Lakoff, G., & Johnson, M. (1980). Conceptual metaphor in everyday language. The Journal of Philosophy, 77(8), 453-486.

Lakoff, G., & Johnson, M. (1999). Philosophy in the Flesh. Basic books.

Lazarus, J. V., Ratzan, S. C., Palayew, A., Gostin, L. O., Larson, H. J., Rabin, K., Kimball, S., & El-Mohandes, A. (2020). A global survey of potential acceptance of a COVID-19 vaccine. Nature Medicine, 1-4. https://doi.org/10.1038/s41591-020-1124-9

Ledesma Jiménez, S. (2020). Aceleración basada en TBB de una aplicación de Análisis de Sentimientos en Twitter. https://riuma.uma.es/xmlui/handle/10630/19419

Li, J.-B., Yang, A., Dou, K., Wang, L.-X., Zhang, M.-C., & Lin, X.-Q. (2020). Chinese public’s knowledge, perceived severity, and perceived controllability of COVID-19 and their associations with emotional and behavioural reactions, social participation, and precautionary behaviour: A national survey. BMC Public Health, 20(1), 1589. https://doi.org/10.1186/s12889-020-09695-1

Liu, B., Blasch, E., Chen, Y.  Shen, D., & Chen, G. “Scalable sentiment classification for Big Data analysis using Naïve Bayes Classifier,” 2013 IEEE International Conference on Big Data, 2013, pp. 99-104, https://doi.org/10.1109/BigData.2013.6691740.

Llorente Ayuso, P. (2019). Análisis de sentimientos aplicado a la opinión política en Twitter: un sistema de clasificación en tiempo realhttp://openaccess.uoc.edu/webapps/o2/handle/10609/96770

Mathur, A., Kubde, P., & Vaidya, S. (2020). Emotional analysis using twitter data during pandemic situation: COVID-19. 2020 5th International Conference on Communication and Electronics Systems (ICCES), 845-848. https://doi.org/10.1109/ICCES48766.2020.9138079

Müller, M., & Salathé, M. (2020). Addressing machine learning concept drift reveals declining vaccine sentiment during the COVID-19 pandemic. arXiv:2012.02197 [cs]. http://arxiv.org/abs/2012.02197

Narayanan, V., Arora, I., & Bhatia, A. (2013). Fast and Accurate Sentiment Classification Using an Enhanced Naive Bayes Model. In: et al. Intelligent Data Engineering and Automated Learning – IDEAL 2013. Lecture Notes in Computer Science, 8206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41278-3_24

Nuzhath, T., Tasnim, S., Sanjwal, R. K., Trisha, N. F., Rahman, M., Mahmud, S. M. F., Arman, A., Chakraborty, S., & Hossain, M. M. (2020). COVID-19 vaccination hesitancy, misinformation and conspiracy theories on social media: A content analysis of Twitter data. SocArXiv. https://doi.org/10.31235/osf.io/vc9jb

Puri, N., Coomes, E. A., Haghbayan, H., & Gunaratne, K. (2020). Social media and vaccine hesitancy: New updates for the era of COVID-19 and globalized infectious diseases. Human Vaccines & Immunotherapeutics, 16(11), 2586-2593. https://doi.org/10.1080/21645515.2020.1780846

Reiter, P. L., Pennell, M. L., & Katz, M. L. (2020). Acceptability of a COVID-19 vaccine among adults in the United States: How many people would get vaccinated? Vaccine, 38(42), 6500-6507. https://doi.org/10.1016/j.vaccine.2020.08.043

Sarasty, O., Carpio, C. E., Hudson, D., Guerrero-Ochoa, P. A., & Borja, I. (2020). The demand for a COVID-19 vaccine in Ecuador. Vaccine, 38(51), 8090-8098. https://doi.org/10.1016/j.vaccine.2020.11.013

Sued, G. E. (2020). El algoritmo de YouTube y la desinformación sobre vacunas durante la pandemia de COVID-19. Chasqui. Revista Latinoamericana de Comunicación, 1(145), 163-180. https://doi.org/10.16921/chasqui.v1i145.4335

Suurmond, J. M. (2005). Our talk and walk. Discourse analysis and conflict studies clingendael institute. Netherlands Institute of International Relations” Clingendael.  https://www.clingendael.org/sites/default/files/pdfs/20051000_cru_working_paper_35.pdf

Tam, C. C., Qiao, S., & Li, X. (2020). Factors associated with decision making on COVID-19 vaccine acceptance among college students in South Carolina. MedRxiv, 2020.12.03.20243543. https://doi.org/10.1101/2020.12.03.20243543

Twohey, M., Collins, K., & Thomas, K. (2020, diciembre 15). With first dibs on vaccines, rich countries have ‘Cleared the Shelves’. The New York Times. https://www.nytimes.com/2020/12/15/us/coronavirus-vaccine-doses-reserved.html

Urra, E., Muñoz, A., & Peña, J. (2013). El análisis del discurso como perspectiva metodológica para investigadores de salud. Enfermería Universitaria, 10(2), 50-57. https://doi.org/10.1016/s1665-7063(13)72629-0

Valdez, D., Thij, M. ten, Bathina, K., Rutter, L. A., & Bollen, J. (2020). Social media insights into US mental health during the COVID-19 pandemic: Longitudinal analysis of twitter data. Journal of Medical Internet Research, 22(12), e21418. https://doi.org/10.2196/21418

Van Dijk, T. (2008). Discourse and context: A socio-cognitive approach. Cambridge University Press.

Van Dijk, T. (2009). Society and discourse. Cambridge University Press.

Wang, J., Jing, R., Lai, X., Zhang, H., Lyu, Y., Knoll, M. D., & Fang, H. (2020). Acceptance of COVID-19 Vaccination during the COVID-19 Pandemic in China. Vaccines, 8(3), 482. https://doi.org/10.3390/vaccines8030482

Wang, K., Goldenberg, A., Dorison, C., Miller, J. K., Uusberg, A., Lerner, J., & Gross, J. (2020). A global test of brief reappraisal interventions on emotions during the COVID-19 pandemic. PsyArXiv. https://doi.org/10.31234/osf.io/m4gpq

Williams, L., Gallant, A. J., Rasmussen, S., Nicholls, L. A. B., Cogan, N., Deakin, K., Young, D., & Flowers, P. (2020). Towards intervention development to increase the uptake of COVID-19 vaccination among those at high risk: Outlining evidence-based and theoretically informed future intervention content. British Journal of Health Psychology, 25(4), 1039-1054. https://doi.org/10.1111/bjhp.12468

Xu, F., Pan, Z., & Xia R. (2020). E-commerce product review sentiment classification based on a naïve Bayes continuous learning framework, Information Processing & Management, 57(5), 102221. https://doi.org/10.1016/j.ipm.2020.102221

Xue, J., Chen, J., Chen, C., Zheng, C., Li, S., & Zhu, T. (2020). Public discourse and sentiment during the COVID 19 pandemic: Using latent dirichlet allocation for topic modeling on Twitter. PLOS ONE, 15(9), e0239441. https://doi.org/10.1371/journal.pone.0239441

Zambrano, D. (2020). Un llamado a las ciencias del comportamiento para combatir la pandemia del COVID-19. Psicología desde el Caribe, 38(1), 6-10. https://rcientificas.uninorte.edu.co/index.php/psicologia/article/view/13650/214421444948

PDF