Psychometric properties of the Reward Probability Index in a Colombian sample
Propiedades psicométricas del Índice de Probabilidad de Recompensa en una muestra Colombiana
Pablo L. Reyes-Buitrago
,
Javier M. Bianchi
,
Juan C. Suárez-Falcón
,
Francisco J. Ruiz
Revista Latinoamericana de Psicología, (2023), 55, pp. 1-9.
Received 23 May 2022
Accepted 19 October 2022
Introducción: Este artículo tuvo como objetivo analizar las propiedades psicométricas del Índice de Probabilidad de Recompensa (RPI) en una muestra colombiana en línea con 1129 participantes. Método: Para realizar un estudio de validación cruzada, la muestra se dividió aleatoriamente en dos submuestras. Se realizó un análisis factorial exploratorio con la primera submuestra que arrojó una estructura de dos factores. Luego, se probó el ajuste de este modelo de dos factores en la segunda submuestra mediante la realización de un análisis factorial confirmatorio. Resultados: Este modelo obtuvo un buen ajuste a los datos y se observó invarianza de medida entre sexos. El RPI también mostró buena consistencia interna según el alfa de Cronbach y el omega de McDonald (.88 en ambos casos) y validez de constructo convergente dadas las correlaciones con otras medidas relacionadas como la Escala de Observación de Recompensa Ambiental (r = .81), y la versión de la Escala de Activación Conductual para la Depresión (r = .71). Conclusiones: el RPI mostró buenas propiedades psicométricas en esta muestra colombiana.
Palabras clave
RPI, reforzamiento positivo contingente a la respuesta (RCPR), activación conductual, depresión
Introduction: This study analysed the psychometric properties of the Reward Probability Index (RPI) in an online Colombian sample with 1129 participants. Method: To conduct a cross-validation study, the sample was randomly divided into two subsamples. An exploratory factor analysis was conducted with the first subsample yielding a two-factor structure. Then, the fit of this two-factor model was tested on the second subsample by conducting a confirmatory factor analysis. Results: This model obtained a good fit to the data and measurement invariance across gender was observed. The RPI also showed good internal consistency according to both Cronbach’s alpha and McDonald’s omega, scoring .88 in both cases. The RPI demonstrated convergent construct validity given its correlations with other related measures such as the Environmental Reward Observation Scale (r = .81), and the full version of the Behavioral Activation Scale for Depression (r = .71). Conclusions: The RPI showed good psychometric properties in this Colombian sample.
Keywords:
RPI, response-contingent positive reinforcement (RCPR), behavioral activation, depression
Armento, M. E. A., & Hopko, D. R. (2007). The Environmental Reward Observation Scale (EROS): Development, validity, and reliability. Behavior Therapy, 38(2), 107–119. https://doi.org/10.1016/j.beth.2006.05.003
Berman, N. C., Fang, A., Hoeppner, S. S., Reese, H., Siev, J., Timpano, K. R., & Wheaton, M. G. (2022). COVID-19 and obsessive-compulsive symptoms in a large multi-site college sample. Journal of Obsessive-Compulsive and Related Disorders, 33, 100727. https://doi.org/10.1016/j.jocrd.2022.100727
Brown, T. A. (2015). Confirmatory factor analysis for applied research. Guilford publications.
Campo-Arias, A., Díaz-Martínez, L. A., Rueda-Jaimes, G. E., & Barros-Bermúdez, J. A. (2005). Validación de la escala de Zung para depresión en universitarias de Bucaramanga, Colombia. Revista Colombiana de Psiquiatría, 34(1), 54-62. https://bit.ly/3sJApz8
Carvalho, J. P., Gawrysiak, M. J., Hellmuth, J. C., McNulty, J. K., Magidson, J. F., Lejuez, C. W., & Hopko, D. R. (2011). The Reward probability index: design and validation of a scale measuring access to environmental reward. Behavior Therapy, 42(2), 249–262. https://doi.org/10.1016/j.beth.2010.05.004
Carvalho, P. & Hopko, D. (2011). Behavioral theory of depression: Reinforcement as a mediating variable between avoidance and depression. Journal of Behavior Therapy and Experimental Psychiatry, 42(2), 154 – 162. https://doi.org/10.1016/j.jbtep.2010.10.001
Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464–504. https://doi.org/10.1080/10705510701301834
Cheung, G.W., & Rensvold, R.B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 9(2), 233–255. https://doi.org/10.1207/S15328007SEM0902_5
Chmielewski, M., Sala, M., Tang, R., & Baldwin, A. (2016). Examining the construct validity of affective judgments of physical activity measures. Psychological Assessment, 28(9), 1128. https://doi.org/10.1037/pas0000322
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum.
Collado, A., Castillo, S. D., Maero, F., Lejuez, C. W., & MacPherson, L. (2014). Pilot of the Brief Behavioral Activation Treatment for Depression in Latinos with limited english proficiency: Preliminary evaluation of efficacy and acceptability. Behavior Therapy, 45(1), 102-115. https://doi.org/10.1016/j.beth.2013.10.001
Dahl, J., Wilson, K., & Nilsson, A. (2004). Acceptance and commitment therapy and the treatment of persons at risk for long-term disability resulting from stress and pain symptoms: A preliminary randomized trial. Behavior Therapy, 35(4), 785–801. https://doi.org/10.1016/S0005-7894(04)80020-0
Fernández-Rodríguez, C., Coto-Lesmes, R., Martínez-Loredo, V., & Cuesta-Izquierdo, M. (2022). Psychological inflexibility, anxiety and depression: The moderating role of cognitive fusion, experiential avoidance and activation. Psicothema, 34(2), 240-248. https://www.psicothema.com/pdf/4742.pdf
Ferrando, P. J., & Lorenzo-Seva, U. (2018). Assessing the quality and appropriateness of factor solutions and factor score estimates in exploratory item factor analysis. Educational and Psychological Measurement, 78(5), 762-780. https://doi.org/10.1177/0013164417719308
Fu, Z., Brouwer, M., Kennis, M., Williams, A., Cuijpers, P., & Bockting, C. (2021). Psychological factors for the onset of depression: A meta-analysis of prospective studies. BMJ Open, 11(7), e050129. https://doi.org/10.1136/bmjopen-2021-050129
Greiff, S., & Scherer, R. (2018). Still comparing apples with oranges? European Journal of Psychological Assessment, 34(3), 141-144. https://doi.org/10.1027/1015-5759/a000487
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
Huang, C. C., Wang, Y. M., Wu, T. W., & Wang, P. A. (2013). An empirical analysis of the antecedents and performance consequences of using the Moodle platform. International Journal of Information and Education Technology, 3(2), 217-221. https://doi.org/10.7763/IJIET.2013.V3.267
Jöreskog, K. G. (2005). Structural equation modeling with ordinal variables using LISREL. https://ssicentral.com/wp-content/uploads/2021/04/lis_ordinal.pdf
Kanter, J., Mulick, P., Busch, A., Berlin, K., & Martell, C. (2007). The behavioral activation for depression scale (BADS): Psycho-metric properties and factor structure. Journal of Psychopa-thology and Behavioral Assessment, 29(3), 191–202. https://doi.org/10.1007/s10862-006-9038-5
Kelley, K., & Lai, K. (2012). MBESS: The MBESS R package (Version 3.3.2) [Software]. http://CRAN.R-project.org/package=MBESS
Kelley, K., & Pornprasertmanit, S. (2016). Confidence intervals for population reliability coefficients: Evaluation of methods, recommendations, and software for composite measures. Psychological Methods, 21(1), 69-92. https://doi.org/10.1037/a0040086
Leal, D., Bianchi, J., & Villalba, J. (2016). Propiedades psicométricas de la escala de activación conductual para la depresión (BADS) [Unpublished master’s thesis]. Fundación Universitaria Konrad Lorenz, Bogotá, Colombia.
Lewinsohn, P. M. (1974). A behavioral approach to the treatment of depression. In R. M. Freidman & M. M. Katz (Eds.), The psychology of depression: Contemporary theory and research (pp. 157-185). Wiley.
Lorenzo-Seva, U., & Ferrando, P.J. (2006). FACTOR: A computer program to fit the exploratory factor analysis model. Behavioral Research Methods, 38, 88-91. https://doi.org/10.3758/BF03192753
Lorenzo-Seva, U., Timmerman, M. E., & Kiers, H. A. (2011). The Hull method for selecting the number of common factors. Multivariate Behavioral Research, 46(2), 340-364. https://doi.org/10.1080/00273171.2011.564527
Manos, R. C., Kanter, J. W., & Busch, A. M. (2010). A critical review of assessment strategies to measure the behavioral activation model of depression. Clinical Psychology Review, 30(5), 547–561. https://doi.org/10.1016/j.cpr.2010.03.008
Meshesha, L. Z., Utzelmann, B., Dennhardt, A. A., & Murphy, J. G. (2018). A behavioral economic analysis of marijuana and other drug use among heavy drinking young adults. Translational Issues in Psychological Science, 4(1), 65-75. https://doi.org/10.1037/tps0000144
Millsap, R. E., & Yun-Tein, J. (2004). Assessing factorial invariance in ordered-categorical measures. Multivariate Behavioral Research, 39(3), 479-515. https://doi.org/10.1207/S15327906MBR3903_4
Price, L. R. (2016). Psychometric Methods: Theory into Practice. Guilford Press.
Ryba, M. M., Lejuez, C. W., & Hopko, D. R. (2014). Behavioral Activation for depressed breast cancer patients: The impact of therapeutic compliance and quantity of activities completed on symptom reduction. Journal of Consulting and Clinical Psychology, 82(2), 325–335. https://doi.org/10.1037/a0035363
Santos, M. M., Puspitasari, A. J., Nagy, G. A., & Kanter, J. W. (2021). Behavioral activation. In A. Wenzel (Ed.), Handbook of cognitive behavioral therapy: Overview and approaches (pp. 235-273). American Psychological Association. https://doi.org/10.1037/0000218-009
Shindaini, A. I., Irin A., Rahman, M. M., & Afrin, S. (2022). Assessment of mental health conditions among working class people during COVID-19: Insights from Dhaka South City, Bangladesh. International Journal of Public Health, 11(2), 518-526.
Timmerman, M. E., & Lorenzo-Seva, U. (2011). Dimensionality assessment of ordered polytomous items with parallel analysis. Psychological Methods, 16(2), 209-220. https://doi.org/10.1037/a0023353
Valderrama-Díaz, M. A., Bianchi-Salguero, J. M., & Villalba-Garzón, J. A. (2016). Validación de la Environmental Reward Observation Scale (EROS) en población colombiana. Universitas Psychologica, 15(4), 1-13. https://doi.org/10.11144/Javeriana.upsy15-4.vero
Viladrich, C., Angulo-Brunet, A., & Doval, E. (2017). A journey around alpha and omega to estimate internal consistency reliability. Anales de Psicología, 33(3), 755-782. https://doi.org/10.6018/analesps.33.3.268401
Voss, A. T., Floyd, R. G., Campbell, K. W., Dennhardt, A. A., MacKillop, J., & Murphy, J. G. (2021). Psychometric evaluation of the Reward Probability Index in emerging adult drinkers. Psychology of Addictive Behaviors, 35(4), 432–443. https://doi.org/10.1037/adb0000712
Wagener, A. & Blairy, S. (2015). Validation and psychometric properties of the French versions of the Environmental Reward Observation Scale and of the Reward Probability Index. Psychologica Belgica, 55(2), 71-86. https://doi.org/10.5334/pb.bg
Wang, X. and Feng, Z. (2022). A narrative review of empirical literature of behavioral activation treatment for depression. Frontiers in Psychiatry, 13, 845138. https://doi.org/10.3389/fpsyt.2022.845138
Zung, W. (1965). A self-rating depression scale. Archives of General Psychology, 12(1), 63–70. https://doi.org/10.1001/archpsyc.1965.01720310065008