A lexical decision task to measure crystallized-verbal ability in Spanish
Una tarea de decisión léxica para medir la capacidad verbal cristalizada en español
Graham Pluck
Revista Latinoamericana de Psicología, (2020), 52, pp. 1-10.
Received 15 May 2019
Accepted 29 November 2019
Una distinción clásica en la ciencia cognitiva es entre las habilidades fluidas y cristalizadas. La habilidad fluida es medida por muchas funcionas ejecutivas y tests de inteligencia. Por otro lado, la habilidad cristalizada puede ser medida sencillamente mediante una tarea de decisión léxica, como en la versión en inglés conocida como Spot-the-Word Test. Sin embargo, hasta ahora no ha habido una versión similar de este test en español. Aquí les presento una Tarea de Decisión Léxica en Español que es de rápida aplicación. Esta fue aplicada en una muestra de 139 participantes, adultos normotípicos. Los resultados indican que este nuevo test tiene buena consistencia interna y confiabilidad test-retest. Los análisis de las correlaciones entre este nuevo test y las variables demográficas, al igual que con las sub pruebas de las Escala de Inteligencia de Wechsler para Adultos, sugiere que es una medida confiable de la habilidad verbal cristalizada. También parece ser una breve, pero válida evaluación de inteligencia en general, con validez predictiva establecida por sus correlaciones positivas con el logro académico. Este nuevo test tiene potencial para ser una herramienta útil para medir rápidamente habilidad de lectura, habilidad verbal cristalizada e inteligencia en adultos hispanohablantes.
Palabras clave
Habilidad verbal, inteligencia cristalizada, decisión léxica, lectura, evaluación cognitiva
A classical distinction in cognitive science is between fluid and crystalized abilities. Fluid ability is captured by many common executive function and intelligence tests. Crystalized ability, on the other hand, can be measured quite simply via lexical decision tasks including the English-language Spot-the-Word Test. However, no similar Spanish-language test has been available up to now. This paper presents a Spanish-language Lexical Decision Task that is quick to administer and was tested on sample of 139 normal adult participants. Results indicate that the new test has good internal consistency and test-retest reliability. An analysis of the correlations between this new test and demographic variables, as well as with the subtests of the Wechsler Adult Intelligence Scale suggest that it is a valid measure of crystalized-verbal ability. It also appears to be a brief but valid assessment of intelligence in general, and its positive correlation with academic achievement establishes predictive validity. The new test has the potential to be a useful research tool to rapidly measure reading ability, crystalized-verbal ability, and intelligence in Spanish speaking adults.
Keywords
Verbal ability, crystalized intelligence, lexical decision, reading, cognitive assessment
Baddeley, A., Emslie, H., & Nimmo-Smith, I. (1992). The Speed and Capacity of Language-Processing Test. Bury St Edmunds: Thames Valley Test Company.
Baddeley, A., Emslie, H., & Nimmo-Smith, I. (1993). The Spot-the-Word test: a robust estimate of verbal intelligence based on lexical decision. British Journal of Clinical Psychology, 32(1), 55-65. https://doi.org/10.1111/j.2044-8260.1993.tb01027.x
Baldo, J. V., Bunge, S. A., Wilson, S. M., & Dronkers, N. F. (2010). Is relational reasoning dependent on language? A voxel-based lesion symptom mapping study. Brain and Language, 113(2), 59-64. https://doi.org/10.1016/j.bandl.2010.01.004
Beardsall, L., & Huppert, F. (1997). Short NART, CCRT and Spot-the-Word: comparisons in older and demented persons. British Journal of Clinical Psychology, 36(4), 619-622. https://doi.org/10.1111/j.2044-8260.1997.tb01266.x
Berwick, R. C., Friederici, A. D., Chomsky, N., & Bolhuis, J. J. (2013). Evolution, brain, and the nature of language. Trends in Cognitive Sciences, 17(2), 89-98. https://doi.org/10.1016/j.tics.2012.12.002
Blakemore, S. J., & Choudhury, S. (2006). Development of the adolescent brain: implications for executive function and social cognition. Journal of Child Psychology and Psychiatry, 47(3-4), 296-312. https://doi.org/10.1111/j.1469-7610.2006.01611.x
Blank, I., & Fedorenko, E. (2017). Domain-general brain regions do not track linguistic input as closely as language-selective regions. Journal of Neuroscience, 37, 9999-10011. https://doi.org/10.1523/JNEUROSCI.3642-16.2017
Blank, I., Kanwisher, N., & Fedorenko, E. (2014). A functional dissociation between language and multiple-demand systems revealed in patterns of BOLD signal fluctuations. Journal of Neurophysiology, 112, 1105-1118. https://doi.org/10.1152/jn.00884.2013
Campbell, K. L., & Tyler, L. K. (2018). Language-related domain-specific and domain-general systems in the human brain. Current Opinion in Behavioral Sciences, 21, 132-137. https://doi.org/10.1016/j.cobeha.2018.04.008
Canivez, G. L., & Watkins, M. W. (2010). Investigation of the factor structure of the Wechsler Adult Intelligence Scale–Fourth Edition (WAIS-IV): exploratory and higher order factor analyses. Psycholological Assessment, 22(4), 827-836. https://doi.org/10.1037/a0020429
Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54(1), 1-22. https://doi.org/10.1037/h0046743
Cattell, R. B. (1967). The theory of fluid and crystallized general intelligence checked at the 5-6 year-old level. British Journal of Educational Psychology, 37(2), 209-224. https://doi.org/10.1111/j.2044-8279.1967.tb01930.x
Cattell, R. B. (1973). Cattell Culture Fair Intelligence Tests. Champaign, IL.: Institute for Personality and Ability Testing.
Clark, L. A., & Watson, D. (1995). Constructing validity: Basic issues in objective scale development. Psychological Assessment, 7(3), 309-319. https://doi.org/10.1037/1040-3590.7.3.309
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159. https://doi.org/10.1037/0033-2909.112.1.155
Craik, F. I., & Bialystok, E. (2006). Cognition through the lifespan: mechanisms of change. Trends in Cognitive Sciences, 10(3), 131-138. https://doi.org/10.1016/j.tics.2006.01.007
Crawford, J. R., Stewart, L. E., Cochrane, R. H. B., Parker, D. M., & Besson, J. A. O. (1989). Construct validity of the National Adult Reading Test: a factor analytic study. Personality and Individual Differences, 10(5), 585-587. https://doi.org/10.1016/0191-8869(89)90043-3
Cuetos, F., Arce, N., Martinez, C., & Ellis, A. W. (2017). Word recognition in Alzheimer’s disease: Effects of semantic degeneration. Journal of Neuropsychology, 11(1), 26-39. https://doi.org/10.1111/jnp.12077
Cuetos, F., Herrera, E., & Ellis, A. W. (2010). Impaired word recognition in Alzheimer’s disease: the role of age of acquisition. Neuropsychologia, 48(11), 3329-3334. https://doi.org/10.1016/j.neuropsychologia.2010.07.017
Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan Executive Function System: Technical manual. San Antonio, TX: Psychological Corporation.
Galobardes, B., Shaw, M., Lawlor, D. A., Lynch, J. W., & Davey Smith, G. (2006). Indicators of socioeconomic position (part 1). Journal of Epidemiology and Community Health, 60(1), 7-12. https://doi.org/10.1136/jech.2004.023531
García-Torres, A., Vergara-Moragues, E., Piñón-Blanco, A., & Pérez-García, M. (2015). Alteraciones neuropsicológicas en pacientes con VIH e historia previa de consumo de sustancias. Revista Latinoamericana de Psicología, 47(3), 213-221. https://doi.org/10.1016/j.rlp.2015.06.001
Hampshire, A., Highfield, R. R., Parkin, B. L., & Owen, A. M. (2012). Fractionating human intelligence. Neuron, 76(6), 1225-1237. https://doi.org/10.1016/j.neuron.2012.06.022
Howell, D. C. (1992). Statistical methods for psychology. Belmont (CA): Duxbury Press.
Johnson, W., Bouchard Jr, T. J., Krueger, R. F., McGue, M., & Gottesman, I. I. (2004). Just one g: consistent results from three test batteries. Intelligence, 32(1), 95-107. https://doi.org/10.1016/S0160-2896(03)00062-X
Kan, K. J., Wicherts, J. M., Dolan, C. V., & van der Maas, H. L. (2013). On the nature and nurture of intelligence and specific cognitive abilities: the more heritable, the more culture dependent. Psychological Science, 24(12), 2420-2428. https://doi.org/10.1177/0956797613493292
Law, R., & O’Carroll, R. E. (1998). A comparison of three measures of estimating premorbid intellectual level in dementia of the Alzheimer type. International Journal of Geriatric Psychiatry, 13(10), 727-730. https://doi.org/10.1080/09084282.2012.710180
Park, D. C. (2000). The basic mechanisms accounting for age related decline in cognitive function. In D. C. Park & N. Schwarz (Eds.), Cognitive aging: A primer (pp. 1-21). Philadelphia, PA: Psychology Press.
Pinker, S. (2010). Colloquium paper: the cognitive niche: coevolution of intelligence, sociality, and language. Proceedings of the National Academy of Sciences of the United States of America, 107(Supplement 2), 8993-8999. https://doi.org/10.1073/pnas.0914630107
Pluck, G. (2019a). Lexical reading ability predicts academic achievement at university level. Cognition, Brain, Behavior, 22(3), 175-196. https://doi.org/10.24193/cbb.2018.22.12
Pluck, G. (2019b). Preliminary validation of a free-to-use, brief assessment of adult intelligence for research purposes: The Matrix Matching Test. Psychological Reports, 122, 709-730. https://doi.org/10.1177/0033294118762589
Pluck, G., Almeida-Meza, P., Gonzalez-Lorza, A., Muñoz-Ycaza, R. A., & Trueba, A. F. (2017). Estimación de la función cognitiva premórbida con el Test de Acentuación de Palabras. Revista Ecuatoriana de Neurología, 26(3), 226-234.
Pluck, G., Barajas, B. M., Hernandez-Rodriguez, J. L., & Martínez, M. A. (2020). Language ability and adult homelessness. International Journal of Language & Communication Disorders. Advance online publication. https://doi.org/10.1111/1460-6984.12521
Pluck, G., Lee, K. H., Rele, R., Spence, S. A., Sarkar, S., Lagundoye, O., & Parks, R. W. (2012). Premorbid and current neuropsychological function in opiate abusers receiving treatment. Drug and Alcohol Dependence, 124(1-2), 181-184. https://doi.org/10.1016/j.drugalcdep.2012.01.001
Pluck, G., Ruales-Chieruzzi, C. B., Paucar-Guerra, E. J., Andrade-Guimaraes, M. V., & Trueba, A. F. (2016). Separate contributions of general intelligence and right prefrontal neurocognitive functions to academic achievement at university level. Trends in Neuroscience and Education, 5(4), 178-185. https://doi.org/10.1016/j.tine.2016.07.002
Premack, D. (2007). Human and animal cognition: continuity and discontinuity. Proceedings of the National Academy of Sciences of the United States of America, 104(35), 13861-13867. https://doi.org/10.1073/pnas.0706147104
Real Academia Española. Banco de datos (CREA) [on line]. Corpus de referencia del español actual. Retrieved 19 September, 2014, http://www.rae.es
Schipolowski, S., Wilhelm, O., & Schroeders, U. (2014). On the nature of crystallized intelligence: The relationship between verbal ability and factual knowledge. Intelligence, 46, 156-158. https://doi.org/10.1016/j.intell.2014.05.014
Snyder, H. R., Miyake, A., & Hankin, B. L. (2015). Advancing understanding of executive function impairments and psychopathology: bridging the gap between clinical and cognitive approaches. Frontiers in Psychology, 6, 328. https://doi.org/10.3389/fpsyg.2015.00328
Wechsler, D. (1999). The Wechsler Abbreviated Scale of Intelligence professional manual. San Antonio, TX: Psychological Corporation.
Wechsler, D. (2012). Escala de Inteligencia de Wechsler Para Adultos-IV. Madrid, Spain: Pearson.
Woolgar, A., Duncan, J., Manes, F., & Fedorenko, E. (2018). Fluid intelligence is supported by the multiple-demand system not the language system. Nature Human Behaviour, 2(3), 200-204. https://doi.org/10.1038/s41562-017-0282-3
Yuspeh, R. L., & Vanderploeg, R. D. (2000). Spot-the-Word: a measure for estimating premorbid intellectual functioning. Archives of Clinical Neuropsychology, 15(4), 319-326. https://doi.org/10.1016/S0887-6177(99)00020-7